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Summary: Two-signal models have a rich history in immunology. In the
classic two-signal model of T-cell activation, signal one consists of
engagement of the T-cell receptor by antigen ⁄ major histocompatibility
complex, whereas signal two arises from costimulatory ligands on anti-
gen-presenting cells. A requirement for two independent signals helps to
ensure that T-cell responses are initiated only in response to bona fide infec-
tious threats. Our studies have led us to conclude that initiation of innate
immune responses to pathogens also often requires two signals: signal
one is initiated by a microbe-derived ligand, such as lipopolysaccharide
(LPS) or flagellin, whereas signal two conveys additional contextual
information that often accompanies infectious microbes. Although signal
one alone is sufficient to initiate many innate responses, certain
responses—particularly ones with the potential for self-damage—require
two signals for activation. Many of our studies have employed the intra-
cellular bacterial pathogen Legionella pneumophila, which has been established
as a valuable model for understanding innate immune responses. In this
review, we discuss how the innate immune system integrates multiple
signals to generate an effective response to L. pneumophila and other bacte-
rial pathogens.
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Introduction

Two-signal models, in a variety of forms, have helped shape

our understanding of the adaptive immune response for over

40 years (1). In its simplest form, the current two-signal

model of lymphocyte activation states that stimulation of B

and T cells requires cooperation between two distinct signals:

an antigen-specific signal that engages the B or T-cell recep-

tor, and a second receptor-mediated ‘costimulatory’ signal

that licenses the recipient lymphocyte to respond to antigen.

In the case of T cells, this second signal is provided by an

antigen-presenting cell that has been activated by contact

with microbes. Activated T cells can then present a costimu-

latory signal to B cells. The two-signal model for B and T-cell

activation provides a molecular mechanism for ensuring that

the adaptive responses of lymphocytes are directed toward

foreign microbial antigens. The requirement for two signals

is thought to act as a safeguard that regulates the powerful



and potentially harmful immune reaction and prevents the

accidental triggering of responses against the host’s own

tissues.

Conceptual basis for two-signal models in innate immunity

The classical model of innate immune surveillance features

germline-encoded pattern recognition receptors (PRRs) that

recognize molecules, such as bacterial peptidoglycan (PGN)

or viral single stranded RNA (ssRNA), that are conserved

among broad classes of microbes but are absent in the host

(2). While these molecular motifs are routinely referred to as

pathogen-associated molecular patterns (PAMPs), they are

actually common to both pathogenic and non-pathogenic

microbes. Thus, the classical model does not clearly establish

a mechanism for distinguishing pathogens from non-patho-

gens. A question that has interested us is whether the innate

immune system can in fact discriminate between pathogens

and non-pathogens, perhaps by integrating PRR signaling

with additional contextual information. Recently, it has been

proposed that in addition to microbial molecules, the innate

immune system might also have evolved to detect ‘patterns

of pathogenesis’ (3), which have been defined as the manip-

ulations of host cell biology that pathogens use to infect, sur-

vive, and replicate in their hosts. In this review, we explore

the possibility that these two modes of pathogen recogni-

tion—sensing of microbial molecules, and contextual recog-

nition of pathogen-associated activities—might cooperate in

‘two-signal’ fashion to specify certain innate immune

responses.

Legionella pneumophila as a probe of innate immune

responses

While the study of model antigens and purified PAMPs has

yielded a broad understanding of immune surveillance path-

ways, pathogens are defined in large part by their ability to

evade and to manipulate these same pathways (4). Thus, to

understand how the immune system detects and combats a

virulent microbe, it is vital to study the interactions

between virulent microbes and the immune system in the

context of an infection. For this purpose, we employ the

Gram-negative bacterial pathogen Legionella pneumophila. Com-

mon in water sources throughout the world, L. pneumophila

evolved as a parasite of freshwater amoebae. However, this

opportunistic pathogen can also infect macrophages in the

mammalian lung. The ability to infect distinct cell types that

have been separated by at least a billion years of evolution

is surprising but may be due to the fact that L. pneumophila

targets highly conserved host cell pathways to survive and

replicate.

Upon phagocytosis by the host amoeba or macrophage,

L. pneumophila employs a Type IV secretion system, called the

Dot ⁄ Icm system, to secrete over two hundred effector proteins

into the host cytosol (5–7). These effectors manipulate vari-

ous host cell processes, resulting in delayed fusion with lyso-

somes, recruitment of ribosomes and ER-derived vesicles to

the bacterial phagosome, and formation of a replicative

vacuole. While the Dot ⁄ Icm system is absolutely required for

bacterial replication and virulence, it also may inadvertently

deliver bacterial ligands to immunosurveillance pathways in

the host cytosol (discussed in detail throughout this review).

Thus, the Dot ⁄ Icm system provides both a key determinant of

pathogenicity and a potential way for the immune system to

discriminate between virulent and avirulent L. pneumophila.

The evolutionary history of L. pneumophila makes it an

excellent model pathogen for revealing innate immune

surveillance strategies in mammals (8). Since L. pneumophila

is believed not to be transmitted among mammals (9), it

has not evolved significant mechanisms of immune evasion,

allowing the characterization of innate immune pathways

that better-adapted pathogens might inactivate or evade.

Once such pathway is unmasked in L. pneumophila infection,

we can study its role during infection with other, immune-

evasive pathogens, where its involvement may have initially

been less clear. This approach has led us to a broader

understanding of immune recognition not only of L. pneu-

mophila but also of intracellular bacterial pathogens in gen-

eral.

Overview

In this review, we consider four distinct innate immune

responses to L. pneumophila: (i) an inflammasome response, (ii)

a Nod1 ⁄2-dependent response, (iii) a type I interferon

response, and (iv) a unique ‘effector-triggered’ transcriptional

response (Fig. 1). We discuss each of these four responses in

the context of two-signal models. Application of this concep-

tual framework to innate immune recognition of virulent

L. pneumophila yields insight into how the innate immune sys-

tem may be able to integrate two crucial pieces of information

about foreign material that it encounters: first, whether or not

that material constitutes a microbe, and second, whether or

not that microbe is a pathogen. These complementary signals

may dictate both the quality and the strength of the innate

immune response, resulting in both an innate and a subse-

quent adaptive response that is tailored to the threat at hand.
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Two-signal activation of inflammasomes

An illuminating example of how two-signal models operate in

innate immune responses comes from studies of inflamma-

some activation by L. pneumophila. These studies began when

Husmann and Johnson (10) first noted that virulent L. pneumo-

phila strains induced a rapid cell contact-dependent cytotoxic-

ity in macrophages. Kirby and Isberg (11) then showed that

this cytotoxicity was dependent on the Dot ⁄ Icm system and

was associated with the formation of pores in the macrophage

membrane. The early interpretation of these experiments was

that macrophage death was induced by L. pneumophila, for

its benefit, but it has since become clear that the death of

L. pneumophila-infected macrophages is actually a programmed

host cell suicide, called pyroptosis, that is mechanistically and

morphologically distinct from apoptosis (12). Time-lapse

imaging experiments have shown that dying pyroptotic cells

literally explode, ejecting their cytosolic contents with little

prior warning (13, J. von Moltke and R. Vance, unpublished

observations), whereas apoptotic cells display signals that pro-

mote their organized phagocytosis by macrophages prior to

the loss of membrane integrity (13). A key finding was the

observation that L. pneumophila-induced host cell death depends

on a host protease called Caspase-1 (14–16) as well as on the

putative pathogen-sensor proteins Naip5 (14–16) and Nlrc4

(also called Ipaf) (14, 17). Naip5 and Nlrc4 each contain a

nucleotide-binding domain (NBD) and C-terminal leucine-

rich repeat (LRR) domain and are thus classified as members

of the NLR (NBD- and LRR-containing receptor) superfamily.

Naip5 and Nlrc4 are thought to be involved in the formation

of an ‘inflammasome’, a generic term used to describe a mul-

tiprotein platform for Caspase-1 activation (18). It must be

emphasized that only limited biochemical data have been pub-

lished demonstrating the existence of a multiprotein complex

containing Nlrc4 and Naip5. However, Naip5 and Nlrc4 can

be co-immunoprecipitated (14, 19), and our unpublished

studies indicate that the association of Naip5 and Nlrc4 is

inducible and results in the formation of a high molecular-

weight complex (E. Kofoed and R. Vance, unpublished data).

After pioneering work that established other members of

the NLR superfamily, namely Nod1 and Nod2, as microbe-

sensor proteins (20–23), Naip5 and Nlrc4 were proposed to

function as sensors of a L. pneumophila-derived ligand. The nat-

ure of the ligand remained a mystery, however, until two

groups discovered that flagellin-deficient L. pneumophila did not

trigger Naip5- or Caspase-1-dependent pyroptosis (15, 16).

Over the last several years, a model has emerged in which the

L. pneumophila Dot ⁄ Icm system (inadvertently) translocates fla-

gellin into the host cell cytosol, where it is sensed by Naip5

and ⁄or Nlrc4, leading to hetero-oligomerization of

Naip5 ⁄Nlrc4, followed by recruitment and activation of Cas-

pase-1. Similarly, activation of Caspase-1 by Salmonella typhimu-

rium has also been found to be flagellin dependent (24, 25),

with the notable difference that S. typhimurium-dependent acti-

vation of Caspase-1 requires only Nlrc4 and is largely inde-

pendent of Naip5 (15, 26, 27). This peculiarity is discussed in

more detail below.

In what sense can inflammasome activation by L. pneumophila

be considered to depend on two signals? The nature of signal

one is now clear: we have shown that retrovirally mediated

expression of flagellin in the cytosol of macrophages is
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Fig. 1. Innate immune recognition of Legionella pneumophila. In mam-
mals, L. pneumophila primarily infects macrophages, triggering multiple
innate recognition pathways. TLRs sense L. pneumophila in the phagosome,
activating transcription through the adapter MyD88. In addition, virulent
L. pneumophila that possesses a functional Dot ⁄ Icm secretion system can also
activate cytosolic host surveillance pathways by the inadvertent transloca-
tion of bacterial ligands and effectors. Fragments of peptidoglycan (PGN)
stimulate the cytosolic receptors Nod1 and Nod2, which signal through
the adapter Rip2. TLR and Nod signaling converge on activation of pro-
inflammatory transcription factors, including NF-jB. Normally, NF-jB
induces the resynthesis of its own inhibitor, IjB, leading to shutoff of
this transcription factor. However, virulent L. pneumophila secretes five
effectors (Lgt1, Lgt2, Lgt3, SidI, SidL) that block host translation and
inhibit resynthesis of IjB, resulting in sustained NF-jB activation and
transcription of specific genes, including cytokines. These same effectors
also appear to activate host MAPKs, though the mechanism is unclear. In
addition, L. pneumophila translocates an unidentified ligand, probably a
nucleic acid that induces IRF3 activation and transcription of Type I IFNs.
Finally, secreted flagellin is sensed by the Naip5 ⁄ Nlrc4 inflammasome,
leading to Caspase-1 activation, processing and secretion of cytokines,
and a lytic cell death called pyroptosis.
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sufficient to induce a rapid pyroptotic cell death that requires

host Caspase-1 and Nlrc4 (26). These studies have since been

extended to a system in which pyroptosis is induced upon fla-

gellin expression via a stably integrated doxycycline-inducible

construct, essentially leaving no doubt that flagellin itself, in

the absence of other microbial products, is able to activate the

Nlrc4 ⁄Caspase-1 inflammasome (J. von Moltke and R. Vance,

unpublished data). Thus, at first glance, a conventional one

signal model might be considered sufficient to explain inflam-

masome activation by L. pneumophila. The critical point, though,

is that cytosolic access is essential for activation of the

Naip5 ⁄Nlrc4 inflammasome, and flagellin generally does not

reach the host cytosol except in cases of pathogenic infection.

Although extracellular flagellin is sensed in a one-signal fash-

ion by the innate immune system (specifically by Toll-like

receptor 5), the ensuing response involves NF-jB activation

and cell survival—almost the polar opposite of the pyroptotic

death response induced by the presence of flagellin in the

cytosol. The existence of two distinct host responses to a sin-

gle bacterial PAMP illustrates that host cells not only sense the

presence of flagellin but also derive additional contextual

information from where—extracellularly or cytosolically—the

flagellin is sensed (3, 28). Thus, we propose that the subcellu-

lar location of flagellin is interpreted by the host as a second

signal that dictates the functional outcome of signal one.

While some may question whether or not cytosolic localiza-

tion is truly a ‘signal’, the semantics are perhaps not worth

disputing. At a minimum, it can probably be agreed that cyto-

solic localization provides contextual information (that we

will call a signal) that is interpreted by host cells and used to

direct distinct biological outcomes.

The purpose of pyroptosis and its strict control

What is the immunological purpose of pyroptosis, and why

would the host only activate pyroptosis under stringent (two

signal) circumstances? Several potentially beneficial roles of

pyroptosis have been proposed, of which the most straightfor-

ward is the elimination of the intracellular replicative niche

that bacterial pathogens might otherwise occupy to their ben-

efit. While host cell death might prevent intracellular replica-

tion, it does not actually kill the expelled bacteria, which

might then find another more hospitable (non-pyroptotic)

host cell in which to reside. So pyroptotic cells must rely on

other extracellular mechanisms to eliminate bacteria. These

mechanisms may include phagocytes, complement, and anti-

body, but whether and how these classic immunological

effectors cooperate with pyroptosis is still an area of

investigation. In contrast to the relatively tidy and organized

process of apoptotic cell death, pyroptosis is also associated

with the uncontrolled release of cellular contents, some of

which appear to promote inflammatory responses. The

inflammatory mediators not only include cytokines processed

directly by Caspase-1, such as IL-1b and IL-18, but may also

include other cellular molecules that have been shown to pro-

mote inflammation, such as DNA, IL-1a, uric acid crystals,

and HMGB proteins (29). Certain of these mediators are

thought to recruit neutrophils to sites of infection, which may

then specialize in killing any bacteria expelled from the extra-

cellular niche by pyroptosis (30). It appears that the classic

Caspase-1-dependent cytokines (IL-1b ⁄ IL-18) are not essen-

tial either for restriction of L. pneumophila replication in vitro

(15–17) or for Caspase-1-dependent elimination of bacteria

in vivo (30). Instead, the phagocyte oxidase appears to be

important for pyroptosis-dependent elimination of bacteria in

at least one in vivo model, implicating neutrophils in bacterial

clearance following pyroptosis (30).

Weighing heavily against the above-mentioned benefits of

pyroptosis are several significant potential costs to the host.

First, pyroptosis results in elimination of phagocytes that

might otherwise be able to play a key role in bacterial killing.

Elimination of a few macrophages might be a viable immuno-

logical containment strategy, particularly if additional phago-

cytes such as neutrophils can be recruited that are ultimately

able to eliminate the infection. As a general rule, though,

elimination of immune cells seems potentially detrimental. A

second potential cost of pyroptosis is immunopathology

resulting from the release of cellular contents from dying

cells and the resulting inflammatory responses. If activated

inappropriately, necrotic-like cell death, such as is seen in

pyroptosis, can lead to sterile inflammation (29). These

considerations provide a rationale as to why pyroptosis is reg-

ulated by a stringent mechanism that requires the presence of

two independent signals. The inverse application of this rea-

soning predicts that immune responses with a lower potential

for self-damage should have lower thresholds of activation.

Consistent with this hypothesis, ‘one signal’ recognition of

flagellin by TLR5 results in transcriptional and pro-survival

responses, rather than irreversible host cell death and release

of inflammatory mediators.

A three signal model of inflammasome-dependent

cytokine production?

Although inflammasome activation can result in rapid

pyroptotic cell death, for many years the primary function
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of Caspase-1 was believed to be the proteolytic processing

of pro-interleukins-1b and -18 into their active, secreted

forms (31, 32). Production of these cytokines also requires

multiple independent signals. The first signals required are

those leading to the production of the pro-interleukin pro-

teins themselves. These signals are typically derived from

Toll-like receptor signaling in response to classic microbial

ligands such as LPS. As discussed above, additional signals

then activate Caspase-1, which is required for cytokine pro-

cessing and release. Since Caspase-1 activation itself seems

to require two signals, it could be argued that release of

IL-1b and IL-18 requires a total of three signals: an extra-

cellular PAMP to stimulate production of pro-IL-1b ⁄ 18, an

additional PAMP to activate the inflammasome, and cyto-

solic invasion to deliver that PAMP to the cytosol. This

raises the interesting question as to why cytokine processing

would be more tightly regulated than pyroptosis. One pos-

sible reason may be that cytokine release can lead to sys-

temic responses, whereas cell death may result in a more

localized inflammation.

In collaboration with Petr Broz and Denise Monack, our

laboratory demonstrated that cytokine processing and pyrop-

tosis are indeed separable functions of inflammasomes (33).

Cytokine processing appears to depend on a host adapter

protein called Asc (34) that is recruited to active inflamma-

somes and forms a massive (>1 lm) supramolecular struc-

ture within cells called the Asc-speck or focus. One group

calls the Asc focus the ‘pyroptosome’ (35), but this turns

out to be a misnomer, since the structure appears to be spe-

cialized for cytokine processing rather than pyroptosis.

Indeed, Asc-deficient cells appear to undergo normal pyrop-

tosis in response to L. pneumophila and S. typhimurium (36, 37).

Strangely, the pyroptosis that occurs in Asc-deficient cells is

not associated with autoproteolytic processing of pro-Cas-

pase-1. In fact, we showed that mutant pro-Caspase-1 alleles

that are unable to undergo autoproteolytic processing are

nevertheless able to execute pyroptosis almost normally

(33). These results contradicted a widely held dogma that

pro-Caspase-1 requires proteolytic cleavage to become active.

Instead, for reasons that remain unknown but are perhaps

related to substrate accessibility, it seems that proteolytic

processing of Caspase-1 is required only for cytokine pro-

cessing and not for pyroptosis. In addition, our results high-

lighted Asc as another potential control point that cells (or

pathogens) could theoretically use to adjust the relative effi-

ciency of cytokine processing versus pyroptosis. For exam-

ple, inhibition of Asc would reduce cytokine processing

while having no effect on pyroptosis. This is a tantalizing

idea, but there are yet to be any data that specifically demon-

strate that Asc expression or function is regulated by cells or

pathogens.

Do Naip5 and Nlrc4 respond to distinct signals?

One of the unusual aspects of the Naip5 ⁄Nlrc4 inflamma-

some, as compared to other inflammasomes, is the involve-

ment of two NLR proteins, Naip5 and Nlrc4. By contrast, all

other inflammasomes described to date appear to contain only

one NLR protein, e.g. Nlrp1b, Nalp3, or Aim2. Interestingly,

Naip5 and Nlrc4 do not seem to be redundant with each

other, since deletion of either one produces a strong pheno-

type, and deletion of both does not result in a stronger pheno-

type than deletion of Nlrc4 alone (J. Persson, N. Trinidad, and

R. Vance, unpublished observations). Thus, it appears that

Naip5 and Nlrc4 cooperate in some manner that is yet to be

fully understood. One possibility is that Naip5 and Nlrc4 each

respond to distinct signals (38). However, our data do not

seem consistent with this notion. Expression of a C-terminal

domain of flagellin in the host cytosol from a mammalian

promoter appears to be sufficient to activate Caspase-1-depen-

dent cell death, and this single relatively specific signal appears

to require both Nlrc4 and Naip5. Instead, the existing data

support the idea that Naip5 and Nlrc4 are both in the same

genetic pathway, but it is not yet clear whether Naip5 is

upstream, parallel, or downstream of Nlrc4. One interesting

observation is that although Naip5 is strictly required for the

response to the C-terminal domain of flagellin, there are addi-

tional stimuli that can activate Nlrc4 completely indepen-

dently of Naip5 (26, 27). S. typhimurium and Pseudomonas

aeruginosa, for example, appear to activate Nlrc4 and Caspase-1

in a partially Naip5-independent manner. The most striking of

these Naip5-independent stimuli is the bacterial protein PrgJ,

which, like flagellin, activates Caspase-1 in a manner depen-

dent on Nlrc4 when expressed in the macrophage cytosol

from a retroviral promoter (39). We showed that Naip5 is not

required for detection of PrgJ (27), which led us to speculate

that perhaps Naip proteins act upstream of Nlrc4 and confer

the ability to recognize and distinguish specific bacterial

ligands. Indeed, our preliminary studies suggest that another

Naip paralog could be specialized in detection of PrgJ

(E. Kofoed and R. Vance, unpublished data). Although Nlrc4

is widely assumed to be the direct sensor of flagellin, this has

never been formally demonstrated, and the existing data are

equally consistent with a model in which Nlrc4 is not a sensor

at all but acts downstream of Naip5 as an adapter to recruit

and activate Caspase-1. Resolving these possibilities will
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require a more tractable system for biochemical analysis of the

activation of Naip5 ⁄Nlrc4 by flagellin.

Relevance of two-signal models to other inflammasomes

The Naip5 ⁄Nlrc4 inflammasome is now recognized as just

one of several inflammasomes capable of activating Caspase-1

in response to infectious or noxious stimuli. Can the princi-

ples underlying activation of Naip5 ⁄ Nlrc4 be applied to other

inflammasomes? One intriguing case is the Nlrp1b inflamma-

some, which has been shown to activate Caspase-1 in

response to lethal factor (LF) from Bacillus anthracis (40). The

related Nlrp3 inflammasome responds to a diverse set of stim-

uli, including extracellular ATP (signaling via cell-surface

P2X7 receptors) as well as phagocytosed crystalline or crystal-

like material, such as uric acid, asbestos, or alum (reviewed in

41). The direct ligands that bind and activate Nlrp1b and

Nlrp3, should they even exist, remain uncertain. By contrast,

the ligand for the Aim2 inflammasome appears to be cytosolic

double-stranded DNA of almost any sequence (42–45).

Nlrp1b and Nlrp3 are both NLR family members, whereas

Aim2 is a member of a small family of proteins that contain

PYRIN and HIN200 domains. Despite considerable sequence

divergence and remaining uncertainty surrounding their regu-

lation, it does nevertheless appear that all these inflamma-

somes follow a two-signal model for their activation. Nlrp1b,

for example, responds to anthrax LF, but only in the presence

of a pore-forming protein called PA that delivers lethal factor

to the host cell cytosol. It is not clear whether the PA pore

itself provides the second signal or whether the function of PA

is merely to deliver LF to the cytosol. Likewise, signal one for

Aim2 is DNA, but Aim2 does not respond to extracellular

DNA and instead is only activated upon cytosolic delivery of

DNA (typically upon viral invasion of the cytosol). It is there-

fore only in the presence of alarming second signals—cyto-

solic invasion by a DNA virus or a pore-forming toxin—that

Aim2 and Nlrp1b activate Caspase-1.

By contrast, the Nlrp3 inflammasome is a bit of an enigma.

Some stimuli that activate Nlrp3—for example, ATP or phago-

cytosed crystalline particles—can be of extracellular origin. It

has been proposed that phagocytosed crystals activate Nlrp3

by induction of reactive oxygen intermediates (46), or by

induction of phagosomal rupture and subsequent release of

lysosomal enzymes into the cytosol (47). So, these crystals

may in fact be associated with second (cytosolic) signals in a

manner reminiscent of other inflammasomes. But what about

extracellular ATP? This stimulus functions by engaging cell-

surface P2X7 receptors, and thus cytosolic invasion is not

required for it to induce inflammasome activation. However,

two considerations suggest that Nlrp3 might be the exception

that proves the two-signal rule. First, while Nlrp3 is a robust

inducer of IL-1b ⁄ IL-18 release, it is not always clear whether

or not Nlrp3 is as potent an inducer of pyroptosis as other in-

flammasomes. Since production of pro-IL-1b ⁄ IL-18 already

requires separate (TLR-dependent) signals, perhaps two-signal

regulation of Nlrp3 activation itself is not entirely critical. Sec-

ond, unlike the Naip5 ⁄Nlrc4 and Nlrp1b inflammasomes, the

Nlrp3 inflammasome appears not to be constitutively active in

resting cells. For example, extracellular ATP does not induce

potent Nlrp3-dependent release of IL-1b unless the Nlrp3

inflammasome is first primed (by LPS or other signals) (48).

The molecular basis of the requirement for Nlrp3 priming is

still not completely clear but appears likely to include tran-

scriptional induction of Nlrp3 itself (48).

The differential requirement for priming of distinct inflam-

masomes may also reflect the fact that Nlrp3, but not Nlrc4, is

capable of responding to endogenous (self) ligands. Thus,

non-constitutive expression of Nlrp3 may serve to limit the

potential self-reactivity of this inflammasome. In general,

although the nature of the two signals can differ, it does

appear that a requirement for two or more signals is a general

feature for inflammasome activation that presumably acts to

constrain Caspase-1 activation to scenarios in which the host

is gravely threatened.

Two-signal activation of cytosolic transcriptional

responses

Several cytosolic pattern recognition receptors other than

Naip5 ⁄Nlrc4 also contribute to the host response to L. pneumo-

phila: the canonical Nod-like receptors Nod1 and Nod2 sense

PGN fragments, while an Irf3-dependent pathway responds to

an unidentified ligand, probably a nucleic acid. In contrast to

inflammasome recognition of L. pneumophila, these other PRRs

activate transcriptional responses rather than rapid inflamma-

tory cytokine release and cell death.

Induction of pro-inflammatory cytokines by Nod1 and

Nod2

The cytosolic PRRs Nod1 and Nod2 recognize cytosolic frag-

ments of bacterial PGN (di-amino-pimelic acid and muramyl

dipeptide, respectively) and activate host transcription via

their common adapter, Rip2 (20–23, 49). Lipoproteins asso-

ciated with bacterial cell walls can stimulate the extracellular

sensor TLR2 but do not activate the intracellular Nods. Thus,

as for Naip5 ⁄Nlrc4, the cytosolic localization of Nod1 and
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Nod2 provides contextual evidence that a pathogen is present,

since non-pathogenic bacteria generally cannot access the

cytosol. Viala et al. (50) illustrated this point by demonstrating

that cells can sense the PGN of the extracellular Gram-negative

pathogen Helicobacter pylori in a Nod1-dependent manner. It was

proposed that extracellular H. pylori could deliver PGN to the

host cytosol via its bacterial secretion system, resulting in

Nod1 signaling and restriction of bacterial growth. While the

transcriptional targets of Nod1 and Nod2 largely overlap with

TLR-induced genes, there are some recent data suggesting that

Nods may additionally activate unique downstream events,

such as autophagy of invasive bacteria, in a Rip2-independent

manner (51–53).

Nod1 and Nod2 perform somewhat redundant roles with

TLRs during L. pneumophila infection both in macrophages and

in vivo (54, 55). Yet while TLRs can recognize both wildtype

L. pneumophila and the avirulent Dot ⁄ Icm) mutant, Nod1 and

Nod2 specifically respond to virulent L. pneumophila expressing

a functional Dot ⁄ Icm system (55–57). Several studies have

noted a role for Nod1 and ⁄ or Nod2 in L. pneumophila infection

in the mouse lung, although myeloid differentiation factor 88

(MyD88)-dependent pathways (likely to include both TLR

and IL-1 signaling) are also crucial (54, 58–62). Frutuoso

et al. (63) observed that neutrophil recruitment to L. pneumo-

phila-infected lungs was almost entirely dependent on Nod sig-

naling, while several other groups have noted a more modest

requirement for the Nods in both neutrophil recruitment and

clearance of bacteria (56, 58, M. Fontana and R. Vance,

unpublished data). The effects of Nod1 and Nod2 deficiency

become much more pronounced in the absence of compensa-

tory Myd88-dependent signaling; for example, Myd88 ⁄ Rip2) ⁄ )

mice, which lack both TLR and Nod signaling, are strikingly

susceptible to low doses of L. pneumophila, while Myd88) ⁄ ) mice

are moderately resistant (58).

The activation of multiple redundant innate signaling path-

ways by L. pneumophila is perhaps to be expected, given the

pathogen’s lack of significant immune evasion mechanisms.

At the same time, study of host responses to other, better

adapted, pathogens suggests that cooperation between the

Nod proteins and other immune surveillance pathways is

common, serving to enhance or even specify the innate

response. For example, while Nod2 signaling alone does not

typically result in induction of type I interferons, it does sig-

nificantly increase the Irf3-dependent induction of IFN-b in

macrophages infected with the bacterial pathogen Listeria mono-

cytogenes (64). In addition, a unique Nod2 ligand, N-glycolyl

MDP, produced by Mycobacterium tuberculosis, has been reported

to have the capacity to induce IFN-b (65). Similarly, co-treat-

ment of macrophages with the Nod2 agonist MDP greatly

enhances cytokine responses (66, 67) and toxic shock induced

by LPS (68). Thus, not only do the Nods require two signals

(a bacterial ligand plus cytosolic delivery) for their own acti-

vation, but they also provide a second signal that greatly

enhances immune responses—including those that cause

morbidity and mortality—downstream of other receptors.

In addition to altering the magnitude of immune responses,

the Nods have also been shown to act in concert with TLRs to

generate qualitatively distinct responses to complex stimuli. In

dendritic cells, the pro-inflammatory cytokine IL-23 is poorly

induced by TLR2 or Nod2 ligands alone but robustly induced

when the two are added together (69, 70). IL-23 plays an

important role in mucosal immunity, polarizing the adaptive

immune response toward a Th17 phenotype. Accordingly,

dendritic cells activated with both TLR2 and Nod2 ligands

(but not either one alone) are capable of potently activating

IL-17 production in T cells (69). Inappropriate Th17

responses can drive harmful inflammation and autoimmunity

in disease models such as collagen-induced arthritis and

experimental autoimmune encephalopathy (71). Thus, the

requirement for ligation of two innate immune receptors

(one of which is sequestered from normal contact with com-

mensal bacteria by cytosolic localization) may be a way to

limit this powerful, potentially harmful host response to situa-

tions where a pathogen is present.

Finally, several papers have reported physical and functional

interactions between the Nods, the actin cytoskeleton, and the

plasma membrane, that may have consequences for pathogen

recognition (reviewed in 72). Both Nod1 and Nod2 appear to

associate with the plasma membrane in resting epithelial cells.

This association requires an intact actin cytoskeleton, since

pharmacological perturbation of actin polymerization abro-

gates membrane association (72, 73). Legrand-Poels et al.

(73) went on to show a physical interaction between Nod2

and the small GTPase Rac1, which regulates multiple cell pro-

cesses including cytoskeletal remodeling. Interestingly, phar-

macological inhibitors of actin polymerization actually

enhance the responses of both Nod1 and Nod2 to purified

ligands (72, 73), while point mutants of Nod1 that cannot

localize to the plasma membrane also fail to activate NF-jB

(72) or autophagy (51–53). In addition, in epithelial cells

infected with invasive Shigella flexneri, Nod1 relocalizes to mem-

brane sites of bacterial internalization, where it associates with

NEMO (a kinase that acts in the NF-jB pathway) (72), and

ATG16L (a protein involved in autophagy) (51–53). Taken

together, these observations suggest that dynamic associations

with both the plasma membrane and the cytoskeleton are
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important for Nod signaling, although the precise roles of

each interaction remain to be dissected (74).

It is not yet clear whether or not interactions between Nods

and the cytoskeleton are important in pathogen recognition.

However, multiple bacterial pathogens (e.g. L. monocytogenes,

Rickettsia species, S. flexneri) manipulate the host actin cytoskele-

ton to move within cells or spread from cell to cell. Thus, per-

turbations of the cytoskeleton may in fact be a ‘pattern of

pathogenesis’ that acts in concert with Nod recognition of

PGN to trigger a strong immune response.

Cytosolic induction of Type I interferons

Type I interferons (herein referred to simply as IFN) consist

of a single IFN-b subtype, and numerous other subtypes (a,

d, e, etc.), that all signal via the same type I IFN receptor

(called Ifnar). Type II IFN (also called IFN-c) signals via a dis-

tinct receptor and is not discussed herein. While IFN induc-

tion has classically been studied in the context of viral rather

than bacterial infections, multiple bacterial pathogens potently

induce IFN through engagement of either TLRs or cytosolic

receptors (reviewed in 75). Bacteria induce IFN through one

of two distinct mechanisms. The first involves cytosolic recog-

nition of nucleic acids. In fact, early evidence for the existence

of a cytosolic DNA sensor came from the observation that

macrophages deficient in TLR signaling produced IFN in

response to L. pneumophila infection in a manner dependent on

a functional Dot ⁄ Icm system (75). Thus, induction of IFN by

L. pneumophila follows a two-signal model: it requires both a

bacterial ligand (discussed below) and cytosolic delivery of

that ligand by a bacterial secretion system. Since the Dot ⁄ Icm
system is evolutionarily related to bacterial conjugation sys-

tems, it was initially suggested that the Dot ⁄ Icm system may

translocate bacterial DNA into the host cytosol (75). Subse-

quently, we and others have demonstrated a partial role for

the cytosolic RNA sensors (e.g. MDA5 and RIG-I) in IFN

induction by L. pneumophila (76–78). The precise nature of the

bacterial ligand in this case is still uncertain; although MDA5

and RIG-I sense RNA, two reports have described an unusual

mechanism in which RNA polymerase III can transcribe dou-

ble-stranded DNA into a ligand for RIG-I (76, 79). It appears

likely that L. pneumophila induces type I IFN via multiple mecha-

nisms.

Other bacteria also induce IFN in a manner dependent on

both PAMPs and cytosolic access. One example is IFN induc-

tion by cyclic di-nucleotides, such as c-di-GMP and c-di-AMP,

which are unique molecules that function as second messen-

gers in bacteria and archaea but that are not produced by

mammals (80, 81). Cyclic-di-AMP and cyclic-di-GMP induce

IFN through a currently unidentified cytosolic sensor (82–

85). Pathogenic L. monocytogenes triggers this pathway through

release of cyclic-di-AMP, while an avirulent mutant that fails

to escape from the phagosome into the cytosol does not

induce IFN (64, 84, 86). Similarly, virulent Francisella tularensis

induces IFN upon escape into the host cytosol, while mutant

F. tularensis lacking a functional secretion system does not

induce IFN (87). While the ligand and receptor are both

unknown in this instance, F. tularensis is known to release DNA

into the cytosol of infected macrophages through bacterial

lysis (88). Thus, a cytosolic DNA sensor may be involved.

Yersinia pseudotuberculosis also induces a cytosolic IFN response

dependent on its pore-forming bacterial proteins YopB or

YopD (89). Again, although both the ligand and receptor are

unknown in this particular case, overall it seems clear that

cytosolic invasion or access is a requirement for induction of

IFN by many species of pathogenic bacteria (90).

The second major mechanism by which bacteria induce IFN

is through TLR signaling. In theory, the endosomal TLR7 and

TLR9, which sense single-stranded RNA and unmethylated

CpG DNA, respectively, are capable of recognizing bacterial

ligands and inducing IFN. However, few examples of such

recognition occur in the literature (91), perhaps because these

TLRs induce IFN most robustly in plasmacytoid dendritic cells,

which are not highly phagocytic (92) and are not believed to

play a large role in immune responses to bacteria [but inter-

estingly, Ang et al. (93) report a role for pDCs, but not type I

IFN, in L. pneumophila infection]. Instead, the major TLR-depen-

dent way in which bacteria induce IFN is through TLR4-

dependent recognition of LPS on Gram-negative bacteria.

Membrane-bound TLR4 is expressed on the surface of

immune cells, bypassing a requirement for a second signal

such as cytosolic access. This innate pathway is therefore an

exception to the two-signal models of IFN induction.

It is not yet clear why TLR4 should be specially licensed to

induce IFN independent of other signals. However, we note

that the ligands for cytosolic induction of IFN (i.e. RNA and

DNA) are widely distributed among viral and bacterial patho-

gens, and are also produced by the host. Thus, in the context

of nucleic acid sensing, signal two may be important to pro-

vide additional information about the nature of the pathogen

and to restrict the potentially harmful recognition of self-

nucleic acid. In contrast, TLR4 recognizes a molecule found

exclusively on Gram-negative bacteria that produce hexa-acyl-

ated LPS, which are especially prevalent in the intestinal flora.

Therefore, TLR4 may be unlikely to induce an inappropriate

self-directed response. In addition, TLR4¢s capacity to induce
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IFN in the absence of a pathogen-associated signal two may

indicate a role for this cytokine in regulating interactions

between the host and commensal bacteria in the intestine.

Rationale for two-signal induction of IFN in response to

bacteria

The roles of IFN in host defense against bacteria are complex

and poorly understood. IFN actually appears to be harmful to

the host during infection with L. monocytogenes (94–96), F. tular-

ensis novicida (97), and various strains of Mycobacterium tuberculosis

(98, 99), perhaps because it polarizes the adaptive response

away from a protective Th17 outcome (97), affects responses

to IFN-c (100), or sensitizes lymphocytes to apoptosis (95).

On the other hand, type I IFN restricts bacterial growth in

macrophages infected with L. pneumophila (77, 101) and plays a

protective role in mice infected with E. coli and multiple Strepto-

coccus species (102). The pleiotropic effects of IFN may make

it extremely important for the immune system to regulate

production of this cytokine. The requirement for multiple sig-

nals may therefore serve to tailor the specificity and magni-

tude of the IFN response to the threat at hand.

Two-signal activation of bacterial effector-triggered

responses

In plants, detection of harmful pathogenic activities has long

been considered an important mode of innate immune recog-

nition, termed ‘effector-triggered immunity’ (reviewed in

103). By expressing ‘guard’ proteins that monitor the integ-

rity of vital host cell processes, plants are able to detect and

respond to pathogen-mediated disruptions in their own cellu-

lar processes (103). Several groups have postulated the exis-

tence of similar surveillance mechanisms in metazoans (3,

104), but until recently, there was little evidence to support

these speculations. However, in the last few years, several

papers have clearly shown specific innate immune responses

that depend on the activity of pathogen-derived toxins or

effector proteins, which themselves target host processes such

as cytoskeletal remodeling and protein synthesis. In some

cases, these ‘effector-triggered’ responses act in concert with

classical PRR signaling to induce robust, qualitatively distinct

responses to virulent bacteria and viruses (55, 105).

Effector-triggered responses to inhibition of host protein
synthesis

Macrophages infected with L. pneumophila make distinct tran-

scriptional responses to wildtype (Dot ⁄ Icm+) and avirulent

(Dot ⁄ Icm)) bacteria (55, 57, 106), including the robust

Dot ⁄ Icm-dependent induction of inflammatory cytokines and

chemokines (Csf1, Csf2, Il23a, Ccl20), stress response genes

(Gadd45a, Egr1, Hsp70), modulators of the mitogen-associated

protein kinase (MAPK) and NF-jB pathways (Dusp1, Dusp2,

Nfkb1, Irak2, Tnfaip3), and cell-surface markers (Sele, Cd83,

Cd44) (55, 57, 106, 107). While the cytosolic PRRs discussed

above do play a role in inducing a subset of Dot ⁄ Icm-depen-

dent transcriptional targets, the molecular basis of the full

Dot ⁄ Icm-dependent transcriptional response has only recently

begun to be deciphered. First, Shin et al. (57) reported that

wildtype L. pneumophila, but not an avirulent Dot ⁄ Icm) mutant,

induced MAPK activation and transcriptional responses in

macrophages lacking both TLR and Nod1 ⁄Nod2 signaling.

The requirement for a functional Dot ⁄ Icm secretion system

suggested that induction of this host response involved cyto-

solic access and ⁄or secretion of bacterial effectors (57). In col-

laboration with Simran Banga and Zhao-Qing Luo, we have

since demonstrated that the specific host transcriptional

response to pathogenic Dot ⁄ Icm+ L. pneumophila involves the

activity of five bacterial effectors that are secreted into infected

macrophages (55). Once delivered, these effectors inhibit host

protein synthesis via enzymatic modification of a host elonga-

tion factor (107–109). When translation is inhibited, several

repressors of inflammation, including the inhibitor of NF-jB

(IjB), fail to be resynthesized as they turn over. The loss of

these repressors results in sustained activation of NF-jB (55).

An analogous mechanism appears likely to account for the

Dot ⁄ Icm-dependent induction of MAPKs (S. Shin and M. Fon-

tana, unpublished data). It appears that the sustained activa-

tion of signaling pathways that occurs in the presence of

translation inhibition underlies the subsequent enhanced tran-

scription of inflammatory cytokines, including IL-23 and

granulocyte ⁄ macrophage colony-stimulating factor (GM-CSF)

(55). Thus, short-lived inhibitors like IjB appear to serve as

‘guards’ of host translation, leading to a strong host response

when this vital cellular process is disrupted.

Inhibition of translation alone cannot recapitulate the entire

macrophage transcriptional response to L. pneumophila (55).

Rather, translation inhibition acts in concert with TLR or Nod

signaling to generate the full transcriptional response. The

combination of these two signals, as in macrophages infected

with L. pneumophila or treated with a TLR ligand and a transla-

tion inhibitor (such as cycloheximide), results in robust tran-

scription and translation of pro-inflammatory cytokines (55).

Thus, TLRs and Nods provide signal one, indicating the pres-

ence of a microbe, while inhibition of host protein synthesis

serves as the second signal that alerts the host that the microbe

is likely to be pathogenic. As discussed above, cytokines such
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as IL-23 can be harmful to the host when expressed inappro-

priately; thus, the two-signal requirement here may again

serve to limit a potentially damaging host response to situa-

tions where a pathogen is present.

While cycloheximide (or another translation inhibitor)

alone does not recapitulate the full transcriptional response to

L. pneumophila, it does robustly induce a subset of Dot ⁄ Icm-

dependent genes, including the small GTPase Gem and the

cytokine Il1a (55). Since these genes require only one signal

for their induction, we would hypothesize that they are less

likely to induce host damage when improperly expressed.

While the roles of both IL-1a and Gem in L. pneumophila infec-

tion remain uncharacterized, we note that in contrast to

secreted cytokines and surface proteins, the cytosolic factor

Gem is unlikely to act in a cell-extrinsic fashion. Thus, in vivo,

its effects are likely limited to infected macrophages, which

represent a small fraction of host cells at the site of infection.

The cytokine IL-1a is an interesting case. Although IL-1a is

pro-inflammatory and signals through the same receptor as

IL-1b, its mechanism of secretion is unclear, and it may only

be released from dying cells (110). Thus, the transcription of

this cytokine may be somewhat less stringently regulated

because it still requires a second signal—host cell death—for

its release.

Although many of the details remain to be worked out, our

studies of L. pneumophila have suggested potentially general

mechanisms by which the immune system reins in potentially

destructive responses while allowing for effective defense.

Indeed, we have found parallels between the immune

response to L. pneumophila and the response to other bacterial

toxins and effectors that inhibit host translation. We have

shown that two of these toxins, diphtheria toxin and Pseudomo-

nas aeruginosa exotoxin A, can cooperate with TLR signaling to

elicit effector-triggered responses both in macrophages and in

the mouse lung (55). This surveillance pathway may also be

active in other host cell types, since an epithelial cell line trea-

ted with Shiga toxin, another bacterial inhibitor of translation,

also superinduces characteristic cytokines (111).

Effector-triggered immune responses to other pathogens

Other examples of metazoan immune responses to pathogen-

encoded effectors have recently begun to emerge. While few,

if any, of these have been worked out in mechanistic detail,

they do provide evidence for effector-triggered immunity as a

general mode of innate immune surveillance in animals.

Herein, we cite several examples of pathogen-encoded activi-

ties that disrupt two distinct cellular targets: the cytoskeleton,

and host membrane integrity. Importantly, the ‘patterns of

pathogenesis’ (3) we discuss below can aid in the detection of

multiple classes of pathogens, including intracellular and

extracellular bacteria and viruses.

Multiple bacterial and viral pathogens manipulate the host

actin cytoskeleton to avoid phagocytosis by immune cells or,

alternatively, to invade and move within host cells. Thus, the

cytoskeleton is a logical candidate for monitoring by the innate

immune system. In particular, a common host target for

pathogens is the Rho family of GTPases, whose members

direct cytoskeletal dynamics. Several groups have now demon-

strated innate immune responses to bacterial effectors or tox-

ins that constitutively activate members of the Rho GTPase

family, including the S. typhimurium effectors SopE, SopE2, and

SopB (112), and the uropathogenic E. coli toxin cytotoxic nec-

rotizing factor-1 (CNF-1) (113). These innate immune

responses, which include activation of NF-jB and MAPKs and

secretion of cytokines, are independent of TLR and Nod signal-

ing and, in the case of S. typhimurium, require a functional bacte-

rial secretion system (112). It is perhaps significant that these

studies were done in epithelial cells, which are not specialized

immune cells and do not express a wide complement of PRRs.

While many epithelial cells do possess some TLRs, their

expression is often spatially restricted to the basal membrane,

which may minimize inappropriate recognition of gut com-

mensals (114). Thus, ‘effector-triggered’ responses might be

particularly important (and non-redundant) in epithelial cells,

since other modes of pathogen recognition are somewhat

restricted. Interestingly, it has been proposed that S. typhimurium

may actually induce intestinal inflammation as a survival strat-

egy, resulting in decreased competition from commensals

(115). Thus, as for classical PRR-based immune recognition,

effector-triggered immune responses may be exploited by

pathogens in order to gain a survival advantage (112, 115).

Viruses are also experts in manipulating host cell biology,

raising the possibility that they too are sensed indirectly by

host pathways that monitor the integrity of the cell. Multiple

groups have observed that influenza virus activates the Nlrp3

inflammasome in dendritic cells and macrophages, leading to

release of the cytokine IL-1b (116–119). Ichinohe et al. (105)

recently reported that influenza activation of the Nlrp3 inflam-

masome appears to require the activity of the viral protein

M2, a proton channel that plays multiple roles in the influenza

replication cycle. As discussed above, activation of the Nlrp3

inflammasome requires a signal one to upregulate both Nlrp3

and pro-IL-1b. Ichinohe et al. (105) showed that during influ-

enza infection, TLR7 provides the transcriptional signal one,

presumably through recognition of viral RNA. The activity of
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the influenza M2 protein therefore appears to serve as the vital

signal two, though it is not yet understood how M2 activity

results in Nlrp3 activation.

Concluding perspective

In the two-signal model of adaptive immunity, the innate

immune system plays a crucial role in regulating the provi-

sion of signal two, thereby controlling the ability of B and T

cells to respond to antigen. Thus, this two-signal model links

innate with adaptive immunity, resulting in adaptive anti-

gen-specific responses to microbes that trigger innate

immune receptors. Herein, we have discussed the ways in

which the innate immune system is itself regulated by two-

signal frameworks. While certainly not all innate immune

responses fall neatly into a two-signal model, many do—par-

ticularly when considering the immune response to virulent

microbes, which both trigger and manipulate multiple innate

pathways.

Within two-signal models of innate immune sensing, we

have become particularly interested in cooperation between

PRRs and pathways that detect pathogen-associated activities.

Conceptually, the latter are intriguing because they offer a

way to selectively respond to pathogenic bacteria, whereas

both pathogens and non-pathogens have the potential to trig-

ger pathways that sense conserved microbial ligands. As more

examples of effector-triggered immunity are characterized in

metazoans, we hope to better understand how the innate

immune system integrates multiple signals to contain infec-

tion and elicit an appropriate adaptive response.
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